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Many real oscillators are coupled to other oscillators, and the coupling can affect the response of the
oscillators to stimuli. We investigate phase-response curves �PRCs� of coupled oscillators. The PRCs for two
weakly coupled phase-locked oscillators are analytically obtained in terms of the PRC for uncoupled oscillators
and the coupling function of the system. Through simulation and analytic methods, the PRCs for globally
coupled oscillators are also discussed.
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Many systems in physics, chemistry, and biology are
modeled as interacting nonlinear oscillators �1–6�. One of
the easiest ways to characterize an oscillator is its phase-
response curve �PRC� �3–7�. The PRC is defined as the
steady phase shift of an oscillation relative to the unper-
turbed oscillation as a function of the timing of perturbation
to the oscillator. It provides useful information for under-
standing the oscillator’s behavior when the oscillator is sub-
jected to external stimuli or signals from other oscillators.

In most previous studies, the PRC is obtained when the
oscillator is isolated from other oscillators �3–5,7�. However,
many oscillators in real systems are coupled to others when
they are under the influence of external stimuli, and the cou-
pling can affect the response of the oscillators. To better
understand the dynamics of oscillators such as the response
of neuronal population to signals from other brain region �5�
or to controlling stimulations �6�, it is necessary to study how
the coupling changes the PRCs. This study can also give
insights into the phase response of a giant oscillator �for
example, circadian rhythm generators �3�� composed of
many individual oscillators �8�. In this paper, we study the
PRC of coupled oscillators using the average phase of the
system and the relative phases between the oscillators com-
prising the system. The PRC is shown to depend on the PRC
of the isolated oscillator, the nature of the coupling, and the
relative phases between the oscillators. For some cases, the
PRCs are analytically obtained. Our approach differs from
that of Ref. �8� in that we analytically approximate the PRC,
while they require the numerical evaluation of the adjoint of
a certain linear operator.

If coupling between a network of oscillators is sufficiently
“weak,” the possibly high-dimensional system can be re-
duced to a network of coupled phase models �2,4,5�. In the
following we exploit this fact and restrict our analysis to
coupled phase models. Consider, first, two weakly coupled
phase-locked oscillators subjected to a common perturbation
characterized by their individual PRC:

�̇1 = �1 + KH��2 − �1� + Z��1�A��t − t1� , �1�

�̇2 = �2 + KH��1 − �2� + Z��2�A��t − t1� , �2�

where �i�t� is the phase of oscillator i at time t, �i is the
natural frequency of the oscillator i, and K ��0� is the cou-
pling strength. H��� is the coupling function obtained by the
phase reduction �2,4,5�. A��t− t1� denotes a Dirac delta im-
pulse with amplitude A at time t1, which is sufficiently large
so that the perturbing impulse is applied after the system
reaches a steady state. Z��� is the PRC normalized by the
amplitude of the impulse for an uncoupled oscillator when
the perturbation is sufficiently small. Without coupling �K
=0�, the impulse causes a steady phase shift AZ��i�t1�� for
oscillator i.

In the presence of coupling �K�0�, if the oscillators are
locked with nonzero phase difference or the input amplitudes
are different, then the input impulse generally causes non-
identical phase changes to the oscillators. Thus, the system
transiently deviates from the locked state and then returns to
the state. The coupling can affect the phase shift which the
oscillation of the recovered state can have relative to the
unperturbed oscillation. We wish to determine the PRC of
the coupled oscillators—in other words, how the phase shift
depends on the phase at t1 of the perturbation.

To analyze the dynamics, we convert Eqs. �1� and �2� into
those for the average phase ��

�1+�2

2 and the relative phase
���1−�2:

�̇ = �̄ + KHe��� + Zav��1,�2�A��t − t1� , �3�

�̇ = �� − 2KHo��� + Zd��1,�2�A��t − t1� , �4�

where

�̄ =
�1 + �2

2
,

�� = �1 − �2,

Zav��1,�2� =
Z��1� + Z��2�

2
,

Zd��1,�2� = Z��1� − Z��2� ,
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He��� =
H��� + H�− ��

2
,

and

Ho��� =
H��� − H�− ��

2
.

For simplicity, let us assume that the system has one
stable locked state with �=�0 satisfying 0=��−2KHo��0�
and Ho���0��0. The phase of each oscillator can be written
as �1=�+� /2 and �2=�−� /2. Let us denote the phase
shift in a phase—for example, �1—relative to the unper-
turbed oscillation by ��1. We can see that the phase shift for
the oscillator 1 is given by

��1 = �� + ��/2. �5�

When H��� is an odd function, the average phase �
evolves with a constant frequency �̄ before and after the
impulse �Eq. �3��. Thus, ��=AZav(�1�t1� ,�2�t1�). When the
relative phase remains in the basin of attraction of the origi-
nal relative phase right after the impulse, � approaches the
original relative phase. Otherwise, the relative phase moves
to another stable value �called walkthrough�. Thus, ��=� f
−�0, where � f is the stable value of � reached after the
impulse. Note that even �=�0 and �=�0+2	 give different
results. Therefore, the PRC of the oscillator 1 in the coupled
cases is given by

Zc1��1� = AZav��1,�1 − �0� + �� f − �0�/2. �6�

We simulate Eqs. �1� and �2� using Euler method with
time step �t=0.01. We measure the steady phase shift due to

the impulse relative to the unperturbed activity. The PRC is
given by this phase shift as a function of the phase at which
the impulse is applied.

Figure 1 shows Zc1��1� with odd coupling functions. The
prediction from the theory �black solid curves� matches very
well with the simulation results �symbols�. With larger val-
ues of �� and/or smaller values of K, the oscillators are
locked with larger �0. In Figs. 1�a�–1�c� with H���=sin �
and Z���=−sin �, we show the PRC for different values of
the coupling strength K. When �0 is very small, the PRC of
coupled oscillators is very close to that of uncoupled oscil-
lators as expected �Fig. 1�a��. In this case, � goes to the
original value �0 after the impulse. In Fig. 1�b�, with the
larger �0, the PRC of the coupled oscillator becomes signifi-
cantly different from that of uncoupled oscillators. When the
impulse can kick the system out of the basin of the stable
locked state with �0, the system goes through phase walk-
through. If the system has a stable fixed point with �0 and an
unstable fixed point �u in �0,2	� as in the case with H���
=sin � for ��
2K, �u has the role of basin boundary and �
goes to � f =�0+2	 when �0+AZ(�1�t1�)−AZ(�2�t1�)��u.
This type of changes in � causes the discontinuity shown in
the PRC of Fig. 1�c�. We show similar results for a coupling
function with higher-order Fourier terms and an asymmetric
PRC �Fig. 1�d��.

When H��� is not an odd function, the even part of H
affects the dynamics of � and thus the phase shift ��
through Eq. �3�. Finding the PRC in the analytic form is not
possible for these cases since we have to solve Eq. �4� for
general initial data. Instead, we can get an approximation of
the PRC in the limit of small changes in �. Let �=�0+q
with �q��1. We can linearize Eq. �4� and obtain approxima-
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FIG. 1. �Color online� PRCs with odd coupling functions. �1=	 /2+�� and �2=	 /2. ��=0.4 and A=1. �a� K=1: �0�0.201. �b� K
=0.25: �0�0.927. �c� K=0.22: �0�1.141. For �a�, �b�, and �c�, H���=sin � and Z���=−sin �. �d� H���=sin �−0.4 sin�2��, Z���=−�sin��
+0.2	�−sin�0.2	�� / �1+sin�0.2	��, and K=0.5: �0�0.908.
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tion q�q0e−2KHo���0��t−t1� for t� t1 where q0 is the change in
� right after the impulse: q0=AZd(�1�t1� ,�2�t1�). As t→�, �
returns to �0. Thus, ��=0. The phase shift �� is given by

�� = AZav„�1�t1�,�2�t1�… + �
t1

�

K�He��� − He��0��dt

� AZav„�1�t1�,�2�t1�… +
He���0�

2Ho���0�
q0,

where we use He���−He��0��He���0�q�t�.
Therefore, the PRC of the oscillator 1 is

Zc1��1� � AZav��1,�1 − �0� +
He���0�

2Ho���0�
AZd��1,�1 − �0� .

�7�

Figure 2 shows Zc1��1� with non-odd-coupling functions.
In Fig. 2�a�, we show the PRC with the simple type of H.
While AZ and AZav are similar, the obtained PRC for the
coupled oscillator is significantly different from them. The
curve from Eq. �7� fits well with simulation results for the
entire range of �1. Figure 2�b� shows the results with a H
function with higher-order terms. We use small A=0.2 for
this case and the PRC from the theory fits well with the
simulation result. In Fig. 2�c�, we use the same parameters as
in �b� except A=0.5. With the larger A, the theory mis-
matches significantly for a range of phases, but still gives a
relatively similar shape to the simulations. The overall
matching is due to the fact that q=0 at some phases, satisfy-

ing Z���=Z��−�0�, and around those phases the theory fits
well with simulation results. Figure 2�d� shows the PRC of
gap-junction coupled Morris-Lecar oscillators with slightly

different injection currents �4�: CV̇i=−I�Vi ,wi�+ Iext,i
+gsyn�Vj −Vi�+AV��t− t1� with j=2,1 for i=1,2. The equa-
tion for wi and the parameters are given in Ref. �4�. The
system is simulated using the fourth-order Runge-Kutta
method. We compute the PRCs using the full model by ap-
plying the � impulse at different time points and compare
them with the PRCs obtained through phase reduction �Eqs.
�1� and �2�� �2,4,5� and the analytic result of Eq. �7�. We
obtain the phase-reduced equations using the software XP-

PAUT �9�. For type-I and type-II cases, the theory gives good
fitting with the simulation results with weak stimulus.

Next, we want to understand PRCs for oscillators coupled
to many other oscillators. We study the case with globally
coupled oscillators: For i=1,2 , . . . ,N:

�̇i = �i +
K

N
	
j=1

N

H�� j − �i� + Z��i�A��t − t1� , �8�

where N is the total number of oscillators and others are as
defined in the two oscillator system. For simplicity, we as-
sume that the frequencies follow uniform or single-humped
distributions �2�. Note that other cases can be treated simi-
larly.

We introduce similar variables as in two coupled oscilla-
tors: the average of the phases �� 1

N	 j=1
N � j and the phase

�i��i−�M of oscillator i relative to the phase of oscillator
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FIG. 2. �Color online� PRCs with non-odd-coupling functions. For �a�–�c�, �1=	 /2+��, �2=	 /2, and ��=0.4. �a� H���=sin��
+0.4	�, Z���=−�sin��+0.4	�−sin�0.4	�� / �1+sin�0.4	��, and K=1: �0�0.704, A=1. �b� H���=sin��−0.4	�+0.3 sin�2�−0.1	�, Z���
=−�sin��+0.2	�−sin�0.2	�� / �1+sin�0.2	��, and K=0.4: �0�0.769, A=0.2. �c� H���, Z���, and K are the same as in �b�: �0�0.769, A
=0.5. �d� Gap-junction coupled Morris-Lecar oscillators �4�: Iext,1= I0+�I and Iext,2= I0−�I with �I=0.2, AV=40. �Top� type-I case, I0

=50 and gsyn=0.015, �0�1.279. �Bottom� type-II case, I0=94 and gsyn=0.01, �0�0.778.
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M, where the subscript M denotes an oscillator which has a
frequency equal to or very close to the average frequency �̄.
From the definitions of � and �, we obtain �M =�
− 1

N	 j=1
N � j. Because the PRCs for other oscillators can be

treated similarly and oscillator M follows closely to the col-
lective behavior of the system, we focus on the PRC Zc��M�
of oscillator M. As in the case of two coupled oscillators, we
get

Zc��M� = �� − 
��� with 
��� �
1

N
	
j=1

N

�� j . �9�

The equation for � is

�̇ = �̄ +
K

N2 	
i,j=1

N

He�� j − �i� + ZavA��t − t1� , �10�

where Zav��1 , . . . ,�N�� 1
N	i=1

N Z(�i�t�).
For an odd function H���, ��=AZav. But for a non-odd

function H���, the second term contributes to �� and it is
not easy to calculate �� analytically.

Let us consider fully locked states first. For a fully locked
state with relative phases �i0, the system returns to the
locked state after the stimulation and the relative phase �i0
can be changed to the equivalent phase �i0+2ni	, where ni
is an integer. Thus, ��i=2ni	.

With H���=sin��+�, which is a good approximation for
many general coupling functions, Eq. �8� becomes

�̇i = �i + KR sin�� − �i + � + Z��i�A��t − t1� , �11�

where R and � are the order parameter and the correspond-
ing collective phase, respectively, defined by Rei�

� 1
N	 j=1

N ei�j. In the frame rotating with the synchronization
frequency �, the equation becomes

�̇i = �i − � + KR sin��̃ − �i + � + Z��i�A��t − t1� ,

�12�

where �i��i− ��t+�0�, �̃��− ��t+�0� and the constant

�0 is chosen such that the stationary value of �̃ before the
impulse is zero. Let R0 denote the stationary value of R. We
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FIG. 3. �Color online� Fully locked cases. �a� Snapshot of phases of oscillators: a fully locked state. �b� A=0.5. �c� A=1.0. �d� ��i for
�b� and �c� with �M =0.825	. For �a�–�d�, H���=sin � and Z���=−sin �. �e� H���=sin �, Z���=−�sin��+0.3	�−sin�0.3	�� / �1+sin�0.3	��,
and A=0.5. �f� H���=sin��+0.1	�, Z���=−sin �, and A=0.5. A uniform distribution is used for ��i: �i� �i= �̄−��+ 2���i−1�

N−1 or �ii� randomly
selected �i from ��̄−�� , �̄+���. �i� is used for the symbols of �a�–�e� except the gray circles in �b�, �c�, �e�, and �f�. �̄=	 /2. ��=0.6.
K=0.8 for �a�–�e� and K=1 for �f�.
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can analyze the stationary state of the system using self-
consistency argument and find R0 and � �2,10�.

For fully locked states or partially locked states where the
oscillator M is locked with a locking phase �

M
* and the os-

cillators form a stationary distribution relative to the frame
rotating with �, Zav= 1

N	i=1
N Z��M +�i−�

M
* �, where �

M
*

=sin−1� �̄−�
KR0

�+. For Z���=a1+a2 sin��+��, using R0

= 1
N	 j=1

N ei�j, we obtain

Zav = a1 + a2R0 sin��M + � − �
M
* � . �13�

Note that since R0
1, the magnitude of the sinusoidal part
of Zav is smaller than that of Z unless synchrony is perfect.

Figures 3�a�–3�e� show results with H���=sin � and a uni-
form distribution for the frequencies of the oscillators. We
use Z���=−sin � for �a�–�d� and an asymmetric Z��� for �e�.
With the given coupling strength, the system shows a fully
locked state �Fig. 3�a��. Figures 3�b� and 3�c� show the PRCs
for different values of A. With weak stimulation �Fig. 3�b��,
all �i return to the unperturbed values ���i=0 for all i, Fig.
3�d�� and the PRC is shown to be contributed only by ��
=AZav. The prediction Zc��M�=AZav from the theory �Eq.
�13�� fits well with the simulation results. In contrast, with a
stronger impulse �Fig. 3�c��, the simulation results deviate
from Zc��M�=AZav for some range of �M. We calculate 
���
from the simulations and it accounts for the deviation as
predicted from Eq. �9�.

The deviation in Fig. 3�c� can be understood as follows.
Nonzero ��i can occur only when the order parameter tran-
siently decreases. For �M � �	 /2,	�, the impulse disperses
the locked group, because the trailing oscillators receive

more negative impact than the leading ones. Thus, the order
parameter decreases from R0 to R�t1+ � �
R0�. R can de-
crease more depending on the behavior of the oscillators and
then returns to R0. The collective phase � also decreases
��̃�t1+ �
0�, because most of the phases of the oscillators
decrease due to the impulse. The sudden changes in R and �̃
affect the dynamics of oscillators. The behaviors of oscilla-
tors right after the impulse can be described by the equation
�̇i=�i−�+KR�t1+ �sin��̃�t1+ �−�i� with �i�t1+ �=�

i
*

+Z��M�t1�+�
i
*−�

M
* �, where �

i
* is the locking phase for os-

cillator i. The trajectory of oscillator i can escape completely
from the basin of attraction of �i0 during the transient behav-
ior of R and settle to the equivalent phases �i=�i0+2ni	.
Since the curves for ��i , �̇i� are shifted to the left due to the
negative �̃�t1+ � and upwards �downwards� for the oscilla-
tors with �i�� ��i
��, the oscillators with frequencies far
from the average one can escape and those with higher fre-
quencies escape first. Because of this, 
����0 and the PRC
deviates negatively from AZav �Eq. �13��. The oscillators
with frequencies far from the average one have more chance
to have higher n �Fig. 3�d��, because they can drift faster and
stay unlocked longer. Other ranges of �M can be understood
similarly.

When H��� is not odd, it is difficult to find the general
results. For H���=sin��+�, we can see that the second term
of Eq. �10� is equal to KR2 sin . Thus, ��=AZav
+K sin �t1

��R2−R0
2�dt. With weak stimulus, Zc��M�=��

and the PRC deviates positively �negatively� from AZav for
values of R�t1+ ��R0 �R�t1+ �
R0� �Fig. 3�f��. The values of
R�t1+ � are easily calculable using Z and the distribution for
�.
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FIG. 4. �Color online� Partially locked cases with H���=sin �. �a� Snapshot of phases of oscillators: a partially locked state. �b� A
=0.5. �c� ��i. Z���=−sin �. ��i obeys a Gaussian distribution g�� , �̄�= 1
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exp�− ��−�̄�2

2�2 �: �i� ��N/2�+k= �̄+yk, ��N/2�−k+1= �̄−yk with yk

= �xk−1+xk� /2, xk+1=xk+N−1 /g�xk ,0�, and x0=0 for k=1, . . . ,N /2 �11� or �ii� �i= �̄−yi and �i+N/2= �̄+yi with i�N /2 and yi randomly
selected according to g�y ,0� with y�0. �i� is used for the simulations �symbols� of �a�–�c� except the gray circles in �b�. �̄=	 /2, �=0.3,
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Finally, let us briefly consider partially locked cases in the
limit of N→�. When the system exhibits a partially locked
state, the drifting oscillators form a stationary distribution in
the frame rotating with the synchronization frequency �. In
the original frame, we can say that the distribution rotates
with �. We can define PRCs for locked oscillators. Let us
consider cases with H���=sin �. Figure 4�b� shows the PRC
Zc��M� of oscillator M for the partially locked state of �a�.
We can understand Zc��M� through Eq. �9�. Since H is an odd
function, ��=AZav �Eq. �13��. While for the locked oscilla-
tors ��i=2ni	 and is nonzero in some ranges as in the fully
locked cases, for the drifting oscillators ��i is usually not an
integer multiple of 2	 and can be nonzero in any ranges
�Fig. 4�c��. Simulations show that ��i for the drifting oscil-
lators contribute significantly to the PRC and the PRC �sym-

bols, Fig. 4�b�� differ from AZav �dashed curve� for almost
the entire range of �M.

In summary, we have investigated the PRCs of coupled
oscillators in terms of the PRCs of individuals, the nature of
the coupling, and the relative phases of the oscillators. Our
approach of obtaining PRCs using the average and relative
phases can be applicable to oscillators on different type of
networks. Understanding the phase response of coupled os-
cillators may be helpful for understanding the dynamics of
neuronal population receiving signals �3,5� and improving
the control of abnormal brain activity by stimulation �6�.
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